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In this project, we use many statistical methods to predict the number of protests that will happen
in 2025 using the data provided. First, we begin by figuring out which factors are important for
predicting protests by testing them via a method called parametric bootstrapping. Then, we will
begin to use another method called Monte Carlo to make a 95% prediction interval about how
many protests we might see. By doing this, we hope to make a good estimate of future protests
and help us prepare for what might happen in 2025.

In the dataset, we have a total of 5 variables, one of which we aim to gain deeper insights into.
The objective of this project is to create a prediction model, focusing on the variable “Protest,” to
forecast the number of protests that might occur in any given year with a certain level of confidence.

Firstly, we must undertake data cleaning and preprocessing. By using the head() function, it’s
evident that the “year” variable should ideally consist of categories representing different years
rather than integers. Similarly, “month” and “provinces” are expected to be categorical rather
than simple strings. To rectify this, we will proceed with the following procedures.

Pre-Processing
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First of the id section is to be removed as it adds redundancy. For variables that are meant to be
in a category we may use the function

as.factor()

and for the variables we wish to define as numeric instead of integers, we may use the function

as.numeric()

We may also mention that the population has values which are on a higher range of numbers
compared to protest. So scaling down the population variable will make sure all the numeric in the
data are on the same scale, which is important because it helps with comparing them easily and
understanding the results better. It also makes the process of calculation more smooth. Another
important reason to scale is that we are sure when population is 0, we expect the number of protests
to be 0 which the function log() allows us to do.

We also want to look at how seasons affect protests compared to just looking at individual months.
While focusing on seasons gives us a general idea of yearly trends, it means we lose some specific
monthly details and might not be totally accurate because seasons can vary in length. When we
leave out months from our model, we end up with a weird situation where the relationship between
population and protests is inversly proportional, I.e., as population increases, our prediction of
protests decrease. So, keeping months in our model is vital to preserve all necessary information.
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1 Model Selection

Upon completing the data preparation phase, we are poised to select a suitable model. Our choice
falls upon Poisson Regression, aimed at forecasting protest occurrences. Our model is comprised
of four predictors: year, month, province, and population size. Leveraging historical data, these
factors will aid in forecasting the frequency of protests in the future. Subsequently, after training the
model, we will assess the significance of each variable and interpret the results of factors influencing
protests.

Fundamental of Poisson Regression:

Poisson Regression models the expected count of events 𝑌 as a function of predictor variables 𝑋
using the Poisson distribution:

𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
Where 𝜆 represents the expected count of events. The relationship between the predictor variables
and 𝜆 is modeled using the logarithm link function:

𝑙𝑜𝑔(𝜆) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘

where 𝛽0, 𝛽1, ..., 𝛽𝑘 are the coefficients estimated by the regression and 𝑋1, 𝑋2, ..., 𝑋𝑘 are the pre-
dictors. The interpretation of the coefficients is in terms of relative changes in the expected count
of events, 𝜆. For example, if 𝛽1 is positive, it indicates that for a one-unit increase in 𝑋1 , the
expected count of events increases/decreases by a factor of 𝑒𝛽1 with differences up to a sign change
of 𝛽1 , after holding other variables constant.
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Poisson Regression model:

From the summary function, it’s evident that when selecting a significance level of 𝛼 = 0.05, the
variables: provBritish Columbia, monthSeptember, monthMay, monthMarch, and monthFebruary
are deemed non-significant, meaning that we fail to reject the hypothesis:

𝐻0 ∶ 𝛽𝑘 = 0 vs. 𝐻1 ∶ 𝛽𝑘 ≠ 0

Conversely, the remaining variarexhibit signticance. Nonetheless, we intend to conduct another
tedetermineertain the significance of each individual parameter through parametric bootstrapping.
In the subsequent code snippet, a Poisson regression model is fitted to the data. This model
estimates coefficients for the predictors (year, seasons, prov, pop). In this parametric bootstrap
approach, rather than directly resampling from the dataframe, resampling is based on simulated
data generated from the fitted Poisson regression model. By repeatedly fitting the model to these
resampled datasets and calculating parameter coefficients, we can leverage the bootstrap parameters
to estimate the sampling variability of the model parameters, construct confidence interandls, or
assess uncertainty regarding the parameter estimates.
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2 Bootstrapping Parameters

Parametric bootstrapping for a Poisson regression model involves several key steps to estimate
the uncertainty associated with the model’s parameters. Initially, the Poisson regression model
is fitted to the original dataset, establishing the relationship between predictors and the outcome
variable, such as protest counts. Then, new datasets are generated through simulation, using the
estimated parameters from the original model. Each new dataset is created by sampling from
a Poisson distribution, with mean values equal to the predicted counts from the original model.
Subsequently, the Poisson regression model is refitted to each of these resampled datasets, resulting
in parameter estimates for each iteration. By repeating this process numerous times, a distribution
of parameter estimates is obtained. From this distribution, standard errors and confidence intervals
for each parameter can be calculated, providing insights into the uncertainty surrounding the
model’s estimates.

We used code to conducts bootstrap resampling to estimate confidence intervals for the parameters.
Initially, we utilize the boot.ci() function from the boot package in R to compute percentile-based
bootstrap confidence intervals (type = “perc”) for the first parameter (index = 1) of the model.
Then, the results are stored in a list named boot_ci_list. We iterate this process over an index
= i where i ranges from 1 to 26, and print the outcomes. This procedure provides us with a 95%
confidence interval for each parameter, where Beta 0 represents the intercept.
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Parameter: Beta_ 0 Parameter: Beta_ 11 
Bootstrap CI (95%): -424.5769 - 99.35159 

Bootstrap CI (95%): -0.6099544 - 0.1777668 

Parameter: Beta_ 1 

Bootstrap CI (95%): -0.7412705 - 0.1474053 
Parameter: Beta_ 12 

Bootstrap CI (95%): -0.269729 - 0.242004 

Parameter: Beta_ 2 

Bootstrap CI (95%): -1.100472 - -0.431664 
Parameter: Beta_ 13 

Bootstrap CI (95%): -4.072439 - 1.550148 

Parameter: Beta_ 3 

Bootstrap CI (95%): -1.198947 - -0.3446166 Parameter: Beta_ 14 

Bootstrap CI (95%): -7.644765 - 32.08168 

Parameter: Beta_ 4 

Bootstrap CI (95%): -0.2281949 - 0.4021107 Parameter: Beta_ 15 

Bootstrap CI (95%): -11.62437 - 47.28539 

Parameter: Beta_ 5 

Bootstrap CI (95%): -0.6010649 - -0.0034242: Parameter: Beta_ 16 
Bootstrap CI (95%): -14.83718 - 58.72715 

Parameter: Beta_ 6 

Bootstrap CI (95%): -0.9348345 - -0.3167158 Parameter: Beta_ 17 

Bootstrap CI (95%): -32.69142 - 125.5443 
Parameter: Beta_ 7 

Bootstrap CI (95%): -0.6447007 - -0.0672396, Parameter: Beta_ 18 

Parameter: Beta_ 8 
Bootstrap CI (95%): -10.06934 - 40.71432 

Bootstrap CI (95%): -0.3248727 - 0.2291564 Parameter: Beta_ 19 

Parameter: Beta_ 9 
Bootstrap CI (95%): -32.55113 - 129.0511 

Bootstrap CI (95%): -0.3228818 - 0.178325 
Parameter: Beta_ 20 

Parameter: Beta_ 10 
Bootstrap CI (95%): -32.28252 - 8.855624 

Bootstrap CI (95%): -0.7513795 - 0.1624772 
Parameter: Beta_ 21 

Bootstrap CI (95%): -22.76747 - 89.8804 

Parameter: Beta_ 22 

Bootstrap CI (95%): -17.37451 - 4.583404 

Parameter: Beta_ 23 

Bootstrap CI (95%): -9.431862 - 36.66875 

Parameter: Beta_ 24 

Bootstrap CI (95%): -31.48615 - 127.5534 

Parameter: Beta_ 25 

Bootstrap CI (95%): -6.298036 - 27.89207 
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We can see this matrix plot of all bootstrapped parameter and see where 0 falls within the density
plot to determine if its significant or not.

So according to the bootstrapped confidence interval, the parameters: 𝛽2, 𝛽3, 𝛽5, 𝛽6, 𝛽7 are the
only significant parameters which corresponds to the monthAugust, monthDecember, monthJanu-
rary, monthJuly, monthJune, monthMarch variable. This is very different compared to what the
summary Z-test has given us. Why?

The answer is that the issue with using Z-scores in Poisson Regression is the assumption of equidis-
persion where the 𝑌 ∼ Poisson(𝜆) then E𝑌 = 𝜆 and Var(𝑌 ) = 𝜆 are all equally the same ie, The
model assumes that the variance of the protest is equal to the mean. However, in most realistic
data it often exhibit greater variability, an overdispersion, than what would be expected under the
Poisson distribution.

When overdispersion occurs, the assumption of equidispersion is violated, and the standard errors
of the coefficients estimated by the Poisson Regression may be underestimated. As a result, Z-
scores calculated using these standard errors may be inaccurate, leading to potentially misleading
conclusions about the significance of predictor variables. Which we see is evident for example in
the Population variable or Beta_25.
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In context to Poisson Regression, alternative methods such as quasi-Poisson (Overdispersed Poisson
Regression) or Negative Binomial Regression are often employed. These methods explicitly account
for overdispersion by allowing the variance to exceed the mean. In such models, the significance
and interpretation of predictor variables, including the population variable, may differ from those
in standard Poisson Regression due to the adjustments made to accommodate overdispersion. In
the Overdispersed Poisson Regression case, we add a “dispersion” parameter 𝜙 > 0. Then, our
random variable 𝑌 will have E𝑍 = 𝜆 and Var(𝑌 ) = 𝜙𝜆. Just like the bootstrap, we can see the
difference in parameter significance in the code below which almost lines up with bootstrapping
significant parameters.

Overdispersed poisson regression model:

3 Monte Carlo Prediction Interval

In this section of the project, we are using a method called Monte Carlo simulation to create 95%
prediction bands for each province in 2025 for a given month of the year. Monte Carlo simulation is
a way to generate several guesses based on a model. By doing this for each province, we can predict
not just one outcome, but a range of possible outcomes, considering how uncertain things might
be. This may help us make better plans and decisions for the upcoming year. Combining Monte
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Carlo simulation with prediction modeling lets us give more accurate predictions about what might
happen in each province in 2025.

Before progressing to simulate from our model, we must make a change to year from as.factor() to
as.numeric() because if we were to use categories like “2022” and “2023” for the “year” variable,
the computer sees only those specific years and treats them as the only thing in the universe of that
variable. This limited view might make it hard for the model to understand how things change
over time, as it does not recognize “2025”. But if we use numbers instead, the model can see the
whole timeline from one year to the next. This helps it notice any trends or patterns happening
over the years. So, by using numberical values, we make it easier for the model to predict what
might happen in 2025 because it can understand the bigger picture of how things change over time.

To conduct this we use the code which consists of two functions tailored for predicting and visu-
alizing predicted protests using a Poisson regression model. The predict.protests function accepts
parameters such as province, month, year, population, and the number of simulations. It pro-
ceeds by fitting a Poisson regression model, predicting the expected number of protests, generating
simulated protest counts based on the predicted lambda, calculating 95% prediction bands, and pre-
senting summary statistics. On the other hand, the plot.hist function serves a similar purpose but
emphasizes plotting, generating a histogram of the simulated protest counts for a specified province,
month, and year. These functions enable us to forecast future protest counts and visualize their
distribution via histograms.

To predict protest numbers for 2025, we need to input additional variables into our model. These
include the month, population, and province, though we’re examining all provinces regardless.
For consistency, we’ve chosen July, as it holds significance with Canada’s birthdate. However,
determining population figures required careful consideration. Large deviations from original data
could skew our predictions significantly. To address this, we opted for the mean logarithm of
each province’s population, rounding up to the nearest whole number. This method assumes a
moderate increase in population across all provinces, approximating a rise by a factor of about
≈ 𝑒𝑥, 0 ≤ 𝑥 ≤ 1. This ensures our predictions remain plausible, while allowing for variability in
population growth.

We then apply our code with a loop on all the pronvinces and their respecitive population in July
2025. The outcome is given as a plotted histogram and a summary of the simulation alongside with
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lower/upper bounds of the 95% prediction interval.
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1.000 7.000 9.000 9.338 11.000 21.000
[1] "----- July 2025 , British Columbia (Population: 8886110.52050787 ) -----"
Lower bound: 3
Upper bound: 14

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 6.000 8.000 8.004 10.000 15.000

[1] "----- July 2025 , Manitoba (Population: 3269017.37247211 ) -----"
Lower bound: 5
Upper bound: 18

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 8.00 11.00 10.71 13.00 23.00

[1] "----- July 2025 , New Brunswick (Population: 1202604.28416478 ) -----"
Lower bound: 2
Upper bound: 10

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 4.000 5.000 5.212 6.000 15.000

[1] "----- July 2025 , Newfoundland and Labrador (Population: 1202604.28416478 )
-----"
Lower bound: 4.475
Upper bound: 16.525

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 8.00 10.00 9.94 12.00 22.00

[1] "----- July 2025 , Nova Scotia (Population: 1202604.28416478 ) -----"
Lower bound: 0
Upper bound: 6

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 2.000 2.576 3.250 9.000

[1] "----- July 2025 , Ontario (Population: 24154952.7535753 ) -----"
Lower bound: 3
Upper bound: 14

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 6.00 8.00 8.04 10.00 18.00

[1] "----- July 2025 , Prince Edward Island (Population: 442413.39200892 )
-----"
Lower bound: 5
Upper bound: 17

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 8.00 11.00 10.79 13.00 23.00

[1] "----- July 2025 , Quebec (Population: 8886110.52050787 ) -----"
Lower bound: 0
Upper bound: 6

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 2.000 2.322 3.000 10.000

[1] "----- July 2025 , Saskatchewan (Population: 1202604.28416478 ) -----"
Lower bound: 0
Upper bound: 3

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.000 0.604 1.000 4.000

[1] "----- July 2025 , Alberta (Population: 8886110.52050787 ) -----"
Lower bound: 4
Upper bound: 16

Min. 1st Qu. Median Mean 3rd Qu. Max.
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A boxplot is made to summarize our findings on one graph.

Based on the summary of findings for the predicted protests in July 2025, each province seems to
have varying levels of predicted protest activity. Here’s a breakdown of the observations:

• Alberta: Predicted protests range from 4 to 16, with a mean of approximately 9.3.
• British Columbia: Predicted protests range from 3 to 14, with a mean of around 8.
• Manitoba: Predicted protests range from 5 to 18, with a mean close to 10.7.
• New Brunswick: Predicted protests range from 2 to 10, with a mean of about 5.2.
• Newfoundland and Labrador: Predicted protests range from approximately 4.5 to 16.5, with

a mean close to 9.9.
• Nova Scotia: Predicted protests range from 0 to 6, with a mean of about 2.6.
• Ontario: Predicted protests range from 3 to 14, with a mean close to 8.
• Prince Edward Island: Predicted protests range from 5 to 17, with a mean close to 10.8.
• Quebec: Predicted protests range from 0 to 6, with a mean of approximately 2.3.
• Saskatchewan: Predicted protests range from 0 to 3, with a mean around 0.6.
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From these results, it’s evident that certain provinces, such as Manitoba and Prince Edward Island, 
exhibit higher predicted protest counts compared to others like Nova Scotia and Saskatchewan. The 
predicted protest counts vary based on factors such as population size, historical data trends, and 
possibly other unobserved variables specific t o e ach p rovince. T hese i nsights c ould b e valuable 
for understanding and potentially addressing social or political tensions across different regions of 
Canada.

As a final p oint, we s ee that Monte Carlo sampling helps us understand how certain or uncertain 
our predictions are by trying out lots of different s cenarios. This helps us see how our data and our 
model might vary. We use it to figure out a  range where we think the actual values might fall, like 
the 95% bounds we calculated. But there are some things to watch out for. First, our predictions 
are only as good as the data we used to make them. If our data isn’t very good, our predictions 
might not be either. Second, the assumptions we make when using our model might not always be 
true in real life. For example, we might assume that certain things are related in a certain way, but 
that might not be the case. Finally, Monte Carlo sampling assumes that we know all the details of 
our model perfectly, which might not be true in practice. So, while it’s a useful tool, we need to 
be careful when interpreting the results and remember the limitations of both our model and our 
data. One of these assumptions is that the variation in our data is consistent across all levels of our 
predictors, which is called equidispersion. However, this might not always hold true in real-world 
situations. Additionally, Incorporating cross-validation techniques can enhance the reliability and 
generalizability of the predictions in this project. Cross-validation involves splitting the dataset into 
multiple subsets, training the model on a portion of the data, and then evaluating its performance 
on the remaining unseen data. This process helps assess how well the model performs on new data 
and can provide insights into its robustness and potential for overfitting.

This research process has been both rewarding and insightful. Through the application of statistical 
techniques and data analysis, we have gained valuable insights into the dynamics of protest activity 
in Canada, laying the groundwork for further exploration and refinement o f p redictive m odels in 
this domain. Moving forward, continued efforts t o i mprove m odel a ccuracy a nd r obustness will 
be essential for enhancing the utility of such predictions in informing decision-making and policy 
development. Overall, our study underscores the complexity of modeling social phenomena like 
protests, while also highlighting the potential benefits of employing rigorous statistical methods to 
better understand and anticipate these dynamics.
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