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Abstract—Reinforcement learning algorithms are often eval-
uated primarily on final performance, overlooking important
aspects such as sample efficiency, stability across random seeds,
and worst-case robustness. This narrow evaluation paradigm can
limit insight into algorithm behavior and provide insufficient
guidance for real-world deployment. In this work, we present a
comprehensive empirical study comparing Proximal Policy Op-
timization (PPO) and Trust Region Policy Optimization (TRPO)
across five key dimensions: final policy performance, sample
efficiency, consistency across seeds, worst-case robustness, and
hyperparameter sensitivity. We evaluate each algorithm using 50
random seeds per environment on continuous control tasks. Our
results reveal that algorithm superiority is highly environment-
dependent: PPO excels in the complex Ant-v5 environment across
most metrics, achieving better sample efficiency and substantially
lower variability, while TRPO dominates in HalfCheetah-v5,
which is a more simple environment, with superior final per-
formance and worst-case robustness. Most critically, we demon-
strate that algorithm rankings depend on the evaluation metric
used, with configurations optimized for final performance often
showing poor stability, and vice versa. These findings emphasize
the need for multi-metric evaluation when selecting algorithms
for specific deployment contexts.

Index Terms—Reinforcement Learning, Policy Optimization,
Empirical Evaluation, Performance Metrics, Continuous Control

I. INTRODUCTION

This section motivates the problem of algorithm evaluation
in deep reinforcement learning, states our research questions,
and summarizes our contributions.

A. Motivation

A growing body of empirical research has revealed that the
choice of evaluation metrics significantly influences conclu-
sions about reinforcement learning (RL) algorithm superiority
[1], [2]. The evaluation and comparison of RL algorithms
remain challenging due to the inherent stochasticity in both
learning dynamics and policy execution [3]. Algorithms that
appear superior in one metric may underperform in another,
yet most existing comparisons focus primarily on final per-
formance, leaving critical questions about sample efficiency,
robustness, and practical deployment unanswered.

This discrepancy between evaluation procedures and real-
world deployment requirements motivates our thorough multi-
metric empirical investigation. Conventional algorithm evalua-
tions usually provide learning curves or ultimate performance
for a limited number of seeds, which may not be enough
to make statistically sound inferences. Furthermore, crucial
features of algorithm behavior such as learning speed, stability
across initialization, tolerance to worst-case scenarios, and
sensitivity to hyperparameter selections are commonly over-
looked. Recent work by Agarwal et al. [1] has demonstrated
that proper statistical tools including stratified bootstrap confi-
dence intervals, performance profiles, and robust aggregation
metrics like the interquartile mean are essential for reliable
algorithm comparison. Similarly, Chan et al. [2] showed that
worst-case performance metrics such as conditional value at
risk reveal critical reliability characteristics invisible in mean
performance alone.

Trust Region Policy Optimization (TRPO) [4] and Proxi-
mal Policy Optimization (PPO) [5] represent two prominent
approaches to policy gradient methods that aim to stabi-
lize learning through constraint mechanisms. Despite their
widespread adoption and PPO becoming one of the most
widely used RL algorithms in practice, comprehensive com-
parisons across multiple evaluation metrics remain limited.
Most existing comparisons focus on learning curves and final
returns with insufficient statistical rigor, making it difficult to
answer practical deployment questions.

When practitioners encounter real-world deployment con-
straints, algorithm selection becomes especially crucial. When
robot interaction time is costly, should we prioritize sam-
pling efficiency? When dependability guarantees are essential,
should we prioritize worst-case robustness? Or should we
focus solely on achieving the best possible performance? It
remains challenging to provide systematic answers to these
practical questions without thorough multi-metric examina-
tion. Our study addresses this gap by conducting a rigorous
empirical comparison across five complementary performance
dimensions using 50 random seeds per algorithm-environment
pair.
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B. Research Questions

A comprehensive algorithm evaluation must answer multi-
ple questions beyond “which algorithm achieves the highest
return?” Based on our evaluation framework, we address the
following research questions:

RQ1: Quality of the final policy. How good is the final
policy after training? Which algorithm produces higher quality
policies measured by mean, median, and interquartile mean?

RQ2: Learning speed. How fast does the agent learn?
Which algorithm demonstrates better sample efficiency,
achieving higher performance with fewer environment inter-
actions?

RQ3: Consistency between seeds. How consistent are
results across random initializations? Which algorithm shows
lower median absolute deviation between runs, indicating more
reliable and predictable behavior?

RQ4: Worst-case robustness. How robust is each algorithm
to worst-case runs? Which algorithm has higher conditional
value at risk, indicating better performance even in unfavorable
scenarios?

RQ5: Hyperparameter sensitivity. How sensitive is each
algorithm to hyperparameter tuning? Which algorithm is more
forgiving of suboptimal configurations and requires less care-
ful tuning for deployment?

C. Contributions

We present a comprehensive empirical comparison of PPO
and TRPO that goes beyond traditional single-metric evalua-
tion, answering five fundamental questions about algorithm
behavior. Our evaluation framework systematically assesses
both algorithms across five complementary performance di-
mensions that address different deployment concerns. For final
policy performance, we measure ultimate policy quality using
mean, median, and interquartile mean from offline determinis-
tic rollouts. For sample efficiency, we analyze learning speed
through area-under-curve calculations. For stability across
seeds, we quantify consistency and predictability using me-
dian absolute deviation. For worst-case robustness, we assess
reliability in unfavorable scenarios using conditional value at
risk. For hyperparameter sensitivity, we examine robustness
to suboptimal tuning using median absolute deviation and
conditional value at risk across configurations.

Our rigorous statistical methodology conducts experiments
with 50 random seeds per algorithm-environment combina-
tion and 10 seeds per hyperparameter configuration, totaling
1,920 independent training runs. For each metric, we report
mean with standard deviation, median, interquartile mean for
robust central tendency, and full distribution visualizations.
Finally, we provide evidence-based recommendations for when
to prefer PPO versus TRPO based on specific deployment
priorities, whether prioritizing sample efficiency, reliability,
final performance, or limited tuning resources.

The remainder of this paper is organized as follows. Sec-
tion II reviews background on the reinforcement learning
formalism and policy gradient algorithms, followed by re-
lated work on empirical evaluation. Section III formalizes

our performance metrics. Section IV details our experimental
methodology. Section V presents results. Section VI discusses
practical implications. Section VII concludes.

II. BACKGROUND

This section provides the technical foundations for our
study, covering the reinforcement learning formalism and the
algorithms under comparison.

A. Reinforcement Learning Framework

We consider reinforcement learning in the standard Markov
Decision Process (MDP) setting, defined by the tuple
(S,A, P,R, γ), where S and A are the state and action
spaces, P is the transition probability function, R is the reward
function, and γ ∈ [0, 1) is the discount factor.

A stochastic policy πθ parameterized by θ maps states to
probability distributions over actions. The goal is to find pa-
rameters θ∗ that maximize the expected discounted cumulative
reward:

J(θ) = Eτ∼πθ

[ ∞∑
t=0

γtR(st, at)

]
, (1)

where τ denotes a trajectory sampled by following policy πθ.

B. Policy Gradient Algorithms: TRPO and PPO

We focus on two widely used policy gradient algorithms
that constrain policy updates to ensure stable learning.

Trust Region Policy Optimization (TRPO) [4] addresses
the challenge of step sizing in policy gradient methods by
enforcing a hard constraint on the KL divergence between
successive policies. The optimization problem is:

max
θ

Et

[
πθ(at|st)
πθold(at|st)

Ât

]
(2)

s.t. Et [DKL(πθold(·|st)∥πθ(·|st))] ≤ δ (3)

where Ât is an estimate of the advantage function, and δ is the
trust region size. TRPO solves this constrained problem using
the conjugate gradient algorithm followed by a line search,
providing theoretical guarantees of monotonic improvement
but at significant computational cost.

Proximal Policy Optimization (PPO) [5] simplifies
TRPO’s approach by using a clipped surrogate objective:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(4)

where rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio, and ϵ is the

clipping parameter (typically 0.2). The clipping mechanism re-
moves the incentive for large policy changes without requiring
second-order optimization, making PPO simpler to implement
and computationally efficient.

For both algorithms, hyperparameters such as trust region
size (TRPO), clipping parameter (PPO), optimization epochs,
and value function updates can significantly affect perfor-
mance, motivating systematic evaluation across configurations.
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III. RELATED WORK

This section reviews prior work on empirical evaluation in
reinforcement learning and positions our contributions.

A. Evaluation Practices in Reinforcement Learning
Evaluation in deep reinforcement learning is challenging

due to stochasticity, sensitivity to initialization, and hyperpa-
rameter dependence [3]. Common practices that report only
final performance or single-seed results can yield misleading
conclusions. Henderson et al. [3] documented widespread
issues with reproducibility and evaluation practices, including
insufficient seeds, improper confidence intervals, and selective
reporting. Engstrom et al. [6] demonstrated that implemen-
tation details often have larger effects on performance than
algorithmic differences.

Recent work has proposed more rigorous statistical tools
to address these challenges. Agarwal et al. [1] recommended
stratified bootstrap confidence intervals, performance profiles
using CDFs, and the interquartile mean (IQM) for robust
aggregation. The IQM computes the mean of the middle 50%
of scores, providing robustness to outliers while maintain-
ing higher statistical efficiency than the median. Statistical
efficiency refers to the property that IQM makes better use
of available data than the median, producing more precise
estimates with the same sample size by incorporating infor-
mation from half the distribution rather than just the center
point. Chan et al. [2] proposed using conditional value at risk
(CVaR) to measure worst-case performance and reliability in
RL algorithms. CVaR captures the expected performance in
the tail of the distribution, which is critical for safety-sensitive
applications. For measuring consistency and variability, the
median absolute deviation (MAD) [7] provides a robust alter-
native to standard deviation that is less sensitive to outliers.

B. Comparisons of PPO and TRPO
Despite these methodological advances, most empirical

comparisons of PPO and TRPO remain focused on learning
curves and final returns with limited statistical rigor. The
original PPO paper [5] demonstrated competitive or superior
performance compared to TRPO on several continuous control
tasks, but primarily reported mean performance across a small
number of seeds. Subsequent applications have widely adopted
PPO due to its simplicity and empirical success, yet com-
prehensive multi-metric comparisons using rigorous statistical
methodology remain limited in the literature.

Our work addresses this gap by performing a multi-metric
evaluation across 50 seeds per algorithm-environment pair,
reporting mean, median, IQM, MAD, and CVaR to provide
a comprehensive view of algorithm behavior. We demonstrate
that algorithm rankings depend critically on the evaluation
metric used, with implications for algorithm selection in
different deployment contexts.

IV. PERFORMANCE METRICS AND EVALUATION
FRAMEWORK

We evaluate each algorithm over N independent training
runs (seeds) in a fixed environment. Let Rj,t denote the

episodic return for seed j at evaluation index t, and Gj

denote a scalar summary of that run. Aggregated metrics are
computed across the set {G1, . . . , GN} to capture both central
tendencies and variability in performance.

A. Final Policy Performance

Final policy performance captures the overall quality of the
learned policy after training. For each seed, we compute the
average return over the last K evaluation steps:

Gfinal
j =

1

K

T∑
t=T−K+1

Rj,t. (5)

We summarize these results across seeds using three com-
plementary statistics:

Mean. The arithmetic average of final returns across seeds
provides a simple central tendency but can be sensitive to
extreme outliers.

Median. The 50th percentile of the final returns is robust
to outliers and represents a typical run more reliably than the
mean.

Interquartile Mean (IQM). Following Agarwal et al. [1],
we compute the mean of the middle 50% of final returns.
IQM balances robustness and informativeness, mitigating the
influence of very poor or very good runs while maintaining
higher statistical efficiency than the median.

Together, these statistics provide a comprehensive view of
policy quality. While the mean highlights overall performance,
the median and IQM reveal how representative that perfor-
mance is across runs.

B. Sample Efficiency

Sample efficiency measures how quickly an algorithm learns
to achieve high performance. At each evaluation index t, we
compute the IQM across seeds, producing a robust learning
curve. To summarize learning speed as a single number, we
compute the area under the IQM curve (AUC):

AUC =

T∑
t=1

IQM(R·,t) ·∆t. (6)

Higher AUC indicates that an algorithm reaches strong
performance with fewer environment interactions, which is
especially important when real-world samples are costly.

C. Stability Across Seeds

To quantify consistency across different random initializa-
tions, we use the median absolute deviation (MAD) [7]:

MAD = median
(
|Gfinal

j − median(Gfinal
j )|

)
. (7)

Lower MAD indicates that results are reproducible and
less dependent on random factors such as initialization or
stochastic environment dynamics. High stability is critical for
reliable deployment. MAD is preferred over standard deviation
because it is robust to outliers, providing a more reliable
measure of typical variability.
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D. Worst-Case Robustness

Robustness captures how well an algorithm avoids catas-
trophic failures. Following Chan et al. [2], we use conditional
value at risk (CVaR) at quantile α, defined as the expected
performance of the worst α fraction of runs:

CVaRα = E
[
Gfinal

j | Gfinal
j ≤ VaRα

]
, (8)

where VaRα is the α-quantile of final returns. We use α = 0.1
(bottom 10% of runs) in our experiments.

Higher CVaR means the algorithm performs better even in
unfavorable scenarios. This metric is critical in safety-critical
applications where occasional failures can be costly.

E. Hyperparameter Sensitivity

Hyperparameter sensitivity measures how performance
varies across different algorithm configurations. Let Hc de-
note a central performance statistic (IQM across seeds) for
configuration c. We compute:

MADHP = median
(
|Hc − median(Hc)|

)
, (9)

CVaRα,HP = E
[
Hc | Hc ≤ VaRα({Hc})

]
. (10)

Smaller MADHP indicates stable performance across hy-
perparameter settings, reducing the need for careful tuning.
Higher CVaRα,HP suggests that even worst-performing con-
figurations remain acceptable. These metrics inform how for-
giving an algorithm is to suboptimal hyperparameter choices.

V. EXPERIMENTAL SETUP

This section describes our experimental methodology, in-
cluding environments, implementations, hyperparameters, and
evaluation protocols.

A. Environments

We benchmark PPO and TRPO on two MuJoCo environ-
ments: HalfCheetah-v5 and Ant-v5 [8]. These environments
were selected to represent distinct levels of complexity in
continuous control. HalfCheetah-v5 simulates a planar 2D
robot, whereas Ant involves a more complex 3D quadrupedal
structure. Consequently, the Ant-v5 environment entails a
significantly larger problem space, with a higher-dimensional
observation space (|S| = 105 versus |S| = 17) and action
space (|A| = 8 versus |A| = 6) compared to HalfCheetah.

To maintain stability during training, we normalize both
input features and feedback signals. For the observation space,
the system maintains a running estimate of the mean and
standard deviation based on the history of all visited states.
Each raw observation is then standardized by subtracting this
running mean and dividing by the standard deviation before
being passed to the policy. Simultaneously, we normalize
the reward signal to ensure consistent scale across different
environments. Unlike observations, rewards are only divided
by a running estimate of their standard deviation without
mean subtraction. This omission is intentional to preserve the
underlying shift of the reward distribution, which is essential
for the accurate calculation of cumulative returns.

TABLE I: Hyperparameter configurations for PPO and TRPO.
The sweep covers 16 combinations for each algorithm.

Algorithm Parameter Symbol Value(s)

PPO

Fixed Parameters
Sample Size T 2048
Mini batch size b 64
Policy Learning Rate α 3× 10−4

Value Function Learning Rate αvalue 1× 10−3

Grid Search (Sweep)
Clipping Parameter ϵ {0.2, 0.3}
Target KL Divergence dtarg {0.01, 0.02}
Policy Update Iterations Kπ {10, 20}
Value Function Iterations Kv {10, 20}

TRPO

Fixed Parameters
Sample Size T 2048
Mini batch size (for value function) b 64
Value Function Learning Rate αvalue 1× 10−3

Grid Search (Sweep)
Trust Region Size δ {0.01, 0.02}
Backtracking Coefficient β {1.0, 0.8}
Value Function Iterations Kv {10, 20, 80, 120}

B. Implementation Details

We implement PPO and TRPO using 2-layer neural network
architectures with 64 hidden dimensions and tanh activation
for both actors and critics (value functions). The policy is pa-
rameterized as a diagonal Gaussian distribution N (µ(st), σ),
where the mean µ(st) is predicted by the neural network
and the standard deviation σ is maintained as a separate,
state-independent learnable parameter vector. The log standard
deviation parameter is initialized to −0.5 times the action limit
to ensure appropriate initial exploration variance. Sampled
actions are clamped within the [−1, 1] range to adhere to
environment constraints.

C. Hyperparameter Configurations

To ensure a fair and comprehensive comparison, we conduct
a hyperparameter sweep over 16 distinct configurations for
each algorithm. Table I summarizes our hyperparameter values
for grid search.

For PPO, we specifically tune the clipping parameter (ϵ),
which constrains the policy update, and the target KL diver-
gence threshold (dtarg) used for early stopping. Additionally,
we vary the number of training iterations for both the policy
(Kπ) and value function (Kv) networks.

For TRPO, the grid search focuses on the trust region
size (δ), the backtracking coefficient (governing line-search
acceptance), and the number of value function update iter-
ations (Kv). Since TRPO relies on large batch updates for
the policy (T = 2048) to accurately estimate the Fisher
Information Matrix via Conjugate Gradient, we hypothesize
that the accuracy of the value function is critical for update
stability. Therefore, we sweep over substantially larger values
for Kv (up to 120), to observe if training with more steps
reduces variance in advantage estimation, thereby improving
the efficacy and stability of the Conjugate Gradient step.
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Fig. 1: Comparison of PPO and TRPO’s performance metrics on two different MuJoCo environments: Ant-v5 (Left) and
HalfCheetah-v5 (Right). Each row represents different types of metrics: final evaluation, MAD across seeds, and CVaR
respectively. Each environment had different parameter settings for each algorithm. BP = Best Performance, LV = Least
Variability, BWC = Best Worst Case, DF = Default.

D. Evaluation Protocol

Our experimental framework is designed to ensure statistical
significance and reproducibility. Each algorithm is trained for a
total of 1 million agent steps. The evaluation process is divided
into two phases:

1) Tuning Phase: Each of the 16 hyperparameter config-
urations is evaluated using 10 random seeds to identify
the optimal settings.

2) Comparison Phase: The best-performing configurations
are subsequently re-evaluated using 50 distinct random
seeds to estimate the expected performance and variance.

In total, our study includes 1,920 independent training runs.
To mitigate the effects of training instability, besides logging
online training return, we log the average return calculated
from offline rollouts over 100 episodes. These rollouts are
collected every 2,000 steps during the final 100,000 steps of
training, providing a robust measure of the converged policy’s
quality.

VI. RESULTS

This section presents our experimental results organized by
environment, followed by cross-environment analysis.

A. Hyperparameter Selection

After performing a full hyperparameter sweep for each envi-
ronment and each algorithm, we identify the configuration that
achieves the best score under three complementary evaluation
criteria. BP (Best Performance) denotes the configuration that
maximizes the average final-return metric, representing the
strongest asymptotic policy performance. LV (Least Variabil-
ity) is the configuration with the smallest MAD across seeds,
capturing the most stable and consistent learning dynamics.
BWC (Best Worst Case) corresponds to the configuration
that achieves the highest CVaR with α = 0.3, emphasizing
robustness by improving worst-case performance in the return
distribution.
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TABLE II: Summary of Best Hyperparameter Configurations

Env. Alg. Criteria Configuration

Ant-v5

PPO
BP ϵ = 0.2, dtarg = 0.02, Kπ = 20, Kv = 10
LV ϵ = 0.3, dtarg = 0.01, Kπ = 10, Kv = 20
BWC ϵ = 0.2, dtarg = 0.02, Kπ = 20, Kv = 10

TRPO
BP δ = 0.02, β = 1.0, Kv = 10
LV δ = 0.01, β = 1.0, Kv = 80
BWC δ = 0.02, β = 0.8, Kv = 10

HalfCheetah
-v5

PPO
BP ϵ = 0.3, dtarg = 0.02, Kπ = 20, Kv = 20
LV ϵ = 0.3, dtarg = 0.01, Kπ = 10, Kv = 10
BWC ϵ = 0.3, dtarg = 0.01, Kπ = 20, Kv = 10

TRPO
BP δ = 0.02, β = 1.0, Kv = 10
LV δ = 0.02, β = 0.8, Kv = 120
BWC δ = 0.01, β = 1.0, Kv = 10

TABLE III: AUC of Online IQM Learning Curves (Fig. 4) for
PPO and TRPO Across Both Environments

Method Criteria Ant-v5 (AUC) HalfCheetah-v5 (AUC)

PPO BP 1.62× 108 9.11× 108

BWC 1.62× 108 7.78× 108

DF 1.16× 108 9.41× 108

LV 4.28× 107 7.36× 108

TRPO BP 3.97× 107 1.00× 109

BWC 3.48× 107 8.02× 108

DF 3.11× 107 8.02× 108

LV −1.25× 107 2.90× 108

We include DF (Default) configurations taken directly from
the Deep RL GitHub Repository 1, which corresponds to
the standard parameter settings of PPO and TRPO. These
defaults serve as a practical reference point for evaluating how
much performance, stability, and robustness can be improved
through targeted hyperparameter tuning.

The complete hyperparameter sweep results and perfor-
mance curves are provided in the Appendix, while Table II
summarizes the selected configurations. These configurations
are then compared to each other to characterize differences in
asymptotic performance, variability across seeds, and worst-
case robustness.

B. Ant Environment

The Ant-v5 environment reveals clear distinctions between
PPO and TRPO across the performance, efficiency, and ro-
bustness metrics described in Figure 1 and Table III. Across
all three final evaluation statistics, PPO configurations consis-
tently achieve higher returns than their TRPO counterparts.
Among these, the PPO-DF attains the highest overall perfor-
mance, aligning with the findings reported in the original PPO
paper. However, although PPO–DF produces the strongest final
policies, its variability across seeds is notably high, indicating
that the configuration is not the most stable choice. Instead,
PPO–LV exhibits substantially lower dispersion in final re-
turns, reflecting more reproducible behavior and confirming
its role as the least-variable PPO configuration.

1Deep RL GitHub Repository

The sample-efficiency results corroborate this trend. PPO
configurations generally achieve higher AUC values than
TRPO, with PPO–BP & BWC obtaining the largest AUC in
Ant-v5 and PPO–DF also performing strongly. In contrast,
TRPO configurations exhibit lower overall AUC, and in some
cases negative AUC values indicate substantial degradation in
early or mid-training performance. These observations suggest
that PPO not only reaches high performance but does so
reliably with fewer environment interactions.

Stability and robustness metrics provide further insight
into the behavior of each configuration. MAD curves show
that PPO–LV and PPO–DF maintain the lowest variability
across seeds, whereas TRPO–BWC and TRPO–DF exhibit
substantially higher dispersion, often exceeding MAD values
of 200 during the final stages of training. Worst-case robust-
ness is assessed through CVaR0.1 and highlights strengths of
the seeds. PPO–DF remains competitive even in the lowest-
performing 10% of runs, and PPO–BP & BWC performs
nearly as well, indicating resilience to high-risk failures.
Within TRPO, the TRPO–BWC configuration obtains the
strongest CVaR values, outperforming the other TRPO variants
despite not achieving the highest central-performance metrics.
This suggests that TRPO–BWC provides the most reliable
behavior under adverse conditions, even though TRPO–DF is
the best-performing configuration on average.

C. HalfCheetah Environment

In contrast to Ant-v5, the HalfCheetah-v5 environment
shows a reversal in relative performance between the two algo-
rithms. As illustrated in Figure 1, TRPO achieves superior final
policy performance across all three summary metrics. Both
TRPO-DF and TRPO-BP obtain higher mean, median, and
IQM returns than any of the PPO configurations, indicating
that TRPO is able to exploit the smoother, more predictable
dynamics of HalfCheetah to learn better policies.

The sample-efficiency comparison is broadly consistent with
these observations. Table III shows that TRPO configurations
achieve some of the largest AUC values in HalfCheetah-v5,
with TRPO-BP and TRPO-DF performing particularly well.
PPO-DF and PPO-BP also attain high AUC, but do not clearly
dominate TRPO as in Ant-v5. These findings suggest that in
this environment TRPO is able to combine strong asymptotic
performance with competitive sample efficiency.

Stability and robustness metrics provide additional nuance.
The MAD curves reveal that TRPO-LV achieves the lowest
variability across seeds and is the most stable configuration
overall, whereas other TRPO settings such as TRPO-BP
and TRPO-BWC exhibit much larger fluctuations throughout
training. PPO-LV and PPO-DF maintain moderate dispersion
but do not reach the same level of stability as TRPO-LV.
Thus, while TRPO attains the highest peak performance, this
reliability is strongly configuration-dependent: only carefully
chosen settings such as TRPO-LV combine strong returns with
low across-seed variability.

Worst-case robustness, assessed through CVaR0.1, largely
mirrors the ranking in final performance. TRPO configura-

6

https://github.com/dongminlee94/deep_rl/tree/main


tions, particularly TRPO-BP, TRPO-BWC, and TRPO-DF,
attain higher CVaR values than all PPO variants, indicating
that even their worst-performing runs tend to outperform
the tails of PPO. Consequently, in HalfCheetah-v5, TRPO
dominates not only in average performance but also in worst-
case returns, whereas PPO configurations are comparatively
more prone to low-return failures.

Overall, HalfCheetah-v5 demonstrates a different regime
from Ant-v5: TRPO offers the highest final returns and
strongest tail performance, and with the TRPO-LV config-
uration it can also achieve very low across-seed variability.
PPO remains competitive but does not match the best TRPO
configurations in this environment.

VII. DISCUSSION

This section synthesizes the empirical findings across both
environments and addresses the research questions posed in
the introduction. Together, these results highlight not only the
differences between PPO and TRPO, but also the importance
of evaluating reinforcement learning algorithms using a diverse
set of metrics.

A. Algorithm Comparison Summary

RQ1 (Final Policy Quality). Final evaluation metrics show
that the relative performance of PPO and TRPO depends
strongly on the environment. In Ant-v5, PPO-DF achieves the
highest final returns, with all PPO configurations outperform-
ing their TRPO counterparts. In contrast, HalfCheetah-v5 ex-
hibits the opposite pattern: TRPO-DF and TRPO-BWC obtain
the highest mean, median, and IQM scores, outperforming all
PPO configurations. These results demonstrate that no single
algorithm consistently dominates in raw performance across
environments.

RQ2 (Learning Speed). Sample efficiency, measured
through AUC, largely mirrors these trends. PPO achieves
higher AUC values in Ant-v5, reflecting faster and more
reliable learning. In HalfCheetah-v5, TRPO produces com-
petitive and in some cases superior AUC values, particularly
in the TRPO-BP and TRPO-DF configurations. Thus, both
algorithms can exhibit strong sample efficiency, but their
relative advantage is environment-dependent.

RQ3 (Consistency Across Seeds). Stability results, as
quantified by MAD, show clearer differences between the
algorithms. In Ant-v5, PPO-LV and PPO-DF exhibit sub-
stantially lower variability than any TRPO configuration. In
HalfCheetah-v5, TRPO-LV achieves the lowest MAD and is
the most stable configuration overall, although other TRPO
settings show high dispersion. These findings indicate that sta-
bility is highly configuration-dependent and cannot be inferred
directly from final returns.

RQ4 (Worst-Case Robustness). Worst-case performance,
measured by CVaR0.1, reveals additional trade-offs. In Ant-
v5, PPO-DF and PPO-BP & BWC produce the strongest
tail-performance, outperforming all TRPO configurations.
In HalfCheetah-v5, however, TRPO-BP, TRPO-BWC, and
TRPO-DF achieve higher CVaR scores than PPO, indicating

that TRPO can produce more reliable worst-case returns in
this environment. These results underscore that robustness is
not solely a consequence of mean performance.

RQ5 (Hyperparameter Sensitivity). The hyperparameter
sweeps reveal notable differences in sensitivity. PPO demon-
strates broader regions of stable performance in Ant-v5,
whereas TRPO requires more careful tuning to avoid large
variability or instability. In HalfCheetah-v5, however, TRPO-
LV emerges as both stable and high-performing, showing that
TRPO can achieve strong reliability when hyperparameters
are chosen appropriately. Overall, neither algorithm is univer-
sally more forgiving; robustness to suboptimal tuning is both
environment- and configuration-specific.

B. Broader Implications for RL Evaluation

A key takeaway from our study is that evaluating algorithms
solely on final performance can lead to misleading conclu-
sions. Many configurations that achieve the highest returns
perform poorly in terms of stability or worst-case robustness,
while configurations with strong reliability may not achieve the
highest asymptotic performance. This multi-metric perspective
highlights the inherent trade-offs in reinforcement learning: an
algorithm may excel in one metric while failing dramatically
in another.

Our findings therefore emphasize the importance of using
a comprehensive evaluation framework by incorporating cen-
tral performance, learning speed, across-seed variability, and
worst-case robustness when comparing RL algorithms. Such
multi-dimensional analysis not only provides a more com-
plete understanding of algorithmic behavior but also guides
practitioners toward configurations that better match their op-
erational requirements, whether prioritizing raw performance,
consistency, or safety.

C. Limitations

Our study has the following limitations:
Limited environments. We evaluate on only two MuJoCo

environments. Results may not generalize to other domains
such as Atari, robotic manipulation, or real-world systems.

Hyperparameter configurations. While we conduct a
comprehensive 16-configuration sweep per algorithm, the main
50-seed comparison focuses on best-performing configura-
tions. Extensive per-environment tuning across different hy-
perparameter ranges might reveal additional insights.

Single implementation. We use a single popular open-
source implementation2. Implementation details can signifi-
cantly affect performance [6], and results might differ with
other implementations.

Continuous control only. Both environments involve con-
tinuous action spaces. Conclusions may differ for discrete
action spaces.

Fixed training budget. Training for 1 million steps may
be insufficient for some configurations to reach asymptotic
performance, particularly for TRPO configurations with high
value function iteration counts.

2Deep RL GitHub Repository
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VIII. CONCLUSION

We presented a comprehensive empirical comparison of
PPO and TRPO across five evaluation dimensions: final policy
performance, sample efficiency, stability across seeds, worst-
case robustness, and hyperparameter sensitivity. Using 50
random seeds per algorithm-environment pair and rigorous sta-
tistical methodology following Agarwal et al. [1], we provided
a more complete picture of algorithm behavior than traditional
single-metric evaluations.

A. Summary of Findings

Our study reveals that algorithm superiority is highly
environment-dependent and metric-specific. In Ant-v5, PPO
consistently outperforms TRPO across most metrics: PPO-DF
achieves higher final performance, PPO demonstrates better
sample efficiency, and PPO configurations exhibit substantially
lower variability across seeds. In contrast, HalfCheetah-v5
shows the opposite pattern: TRPO-DF and TRPO-BP achieve
higher final returns, TRPO-BP attains superior sample effi-
ciency, and TRPO-LV provides the lowest variability overall.

Most importantly, our results demonstrate that algorithm
rankings depend critically on the evaluation metric used.
Configurations optimized for final performance (BP) often
show high variability across seeds, while configurations with
the lowest variability (LV) may not achieve the highest returns.
Similarly, worst-case robustness (BWC) does not always corre-
late with mean performance. This multi-dimensional perspec-
tive reveals inherent trade-offs in reinforcement learning that
are invisible when evaluating algorithms on a single metric.

The hyperparameter sensitivity analysis shows that PPO is
generally more forgiving to suboptimal tuning in complex
environments like Ant-v5, while TRPO requires more careful
configuration but can achieve excellent stability when properly
tuned (as demonstrated by TRPO-LV in HalfCheetah-v5).
Neither algorithm uniformly dominates across all deployment
contexts, emphasizing the need for practitioners to select
algorithms based on their specific priorities and environmental
characteristics.

While our study provides insights into algorithm behavior in
HalfCheetah and Ant environments, systematically evaluating
whether these conclusions generalize across different locomo-
tion tasks remains important future work. High-dimensional
tasks such as Humanoid, sparse-reward settings, and domains
outside MuJoCo such as robotic manipulation present differ-
ent challenges that may reveal whether our findings about
sample efficiency, robustness, and hyperparameter sensitivity
hold more broadly. Investigating environment-specific factors
that influence relative algorithm performance would provide
valuable guidance for algorithm selection.

Second, investigating sensitivity to additional hyperparam-
eters, particularly network architecture and GAE parameters,
would provide a more complete picture of each algorithm’s
robustness to configuration choices.

Third, applying the same multi-metric evaluation method-
ology to other algorithm comparisons would demonstrate the

broader utility of our framework. Comparisons between on-
policy and off-policy methods or between model-free and
model-based approaches would benefit from similar rigorous
analysis.

Finally, examining computational cost (wall-clock time)
alongside sample efficiency would provide practical guidance
for deployment, as TRPO’s second-order optimization incurs
additional overhead that may matter in time-constrained set-
tings.
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APPENDIX

This appendix provides supplementary tables and figures
supporting the main analysis. Table IV provides the complete
mapping of configuration IDs to their hyperparameter settings
for reference. Figures 2 and 3 show the hyperparameter
sensitivity analysis for PPO and TRPO respectively. Figure 4
displays IQM learning curves across all training steps. Please
see following pages.
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TABLE IV: PPO and TRPO Hyperparameter Configuration ID Mapping

PPO ID PPO Configuration TRPO ID TRPO Configuration

P1 ϵ = 0.3, dtarg = 0.01,Kπ = 20,Kv = 20 T1 δ = 0.01, β = 0.8,Kv = 120
P2 ϵ = 0.3, dtarg = 0.01,Kπ = 10,Kv = 20 T2 δ = 0.02, β = 0.8,Kv = 120
P3 ϵ = 0.2, dtarg = 0.01,Kπ = 20,Kv = 20 T3 δ = 0.01, β = 1.0,Kv = 120
P4 ϵ = 0.2, dtarg = 0.01,Kπ = 10,Kv = 20 T4 δ = 0.02, β = 1.0,Kv = 120
P5 ϵ = 0.3, dtarg = 0.01,Kπ = 10,Kv = 10 T5 δ = 0.01, β = 0.8,Kv = 80
P6 ϵ = 0.3, dtarg = 0.02,Kπ = 20,Kv = 20 T6 δ = 0.02, β = 1.0,Kv = 80
P7 ϵ = 0.3, dtarg = 0.01,Kπ = 20,Kv = 10 T7 δ = 0.01, β = 1.0,Kv = 80
P8 ϵ = 0.2, dtarg = 0.01,Kπ = 20,Kv = 10 T8 δ = 0.02, β = 0.8,Kv = 80
P9 ϵ = 0.3, dtarg = 0.02,Kπ = 10,Kv = 20 T9 δ = 0.01, β = 0.8,Kv = 20

P10 ϵ = 0.2, dtarg = 0.01,Kπ = 10,Kv = 10 T10 δ = 0.02, β = 0.8,Kv = 20
P11 ϵ = 0.2, dtarg = 0.02,Kπ = 10,Kv = 20 T11 δ = 0.01, β = 1.0,Kv = 20
P12 ϵ = 0.2, dtarg = 0.02,Kπ = 20,Kv = 20 T12 δ = 0.02, β = 1.0,Kv = 20
P13 ϵ = 0.3, dtarg = 0.02,Kπ = 20,Kv = 10 T13 δ = 0.01, β = 0.8,Kv = 10
P14 ϵ = 0.3, dtarg = 0.02,Kπ = 10,Kv = 10 T14 δ = 0.01, β = 1.0,Kv = 10
P15 ϵ = 0.2, dtarg = 0.02,Kπ = 10,Kv = 10 T15 δ = 0.02, β = 0.8,Kv = 10
P16 ϵ = 0.2, dtarg = 0.02,Kπ = 20,Kv = 10 T16 δ = 0.02, β = 1.0,Kv = 10

Fig. 2: PPO hyperparameter analysis across performance, variability, and worst-case metrics (α = 0.3), computed from the
final 100k training steps (i.e., steps ≥ 900k). A higher value defines BP, lower MAD defines LV, and higher CVaR defines
BWC. (See Table IV for IDs.)
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Fig. 3: TRPO hyperparameter analysis across performance, variability, and worst-case metrics (α = 0.3), computed from the
final 100k training steps (i.e., steps ≥ 900k). A higher value defines BP, lower MAD defines LV, and higher CVaR defines
BWC. (See Table IV for IDs.)

Fig. 4: IQM learning curves for both environments of Ant-v5 and HalfCheetah-v5 across all training steps
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